APPENDIX P: Summary of Available Persistence Data for Aldicarb and its Sulfoxide and Sulfone Degradates | Fate Endpoint * | Aldicarb | Aldicarb
sulfoxide | Aldicarb sulfone | | |--|---|-------------------------------------|--|--| | Hydrolysis – pH 5 | stable (MRID
00102065) | | 495 da (MRID
45592104**) | | | Hydrolysis – pH 7 | stable (MRID
00102065) | 6% loss at 30 da
(MRID 00102066) | 63 da (MRID
45592104**) | | | Hydrolysis – pH 9 | <10% loss at 30 da
(MRID 00102065) | 2.3 da (MRID
00102066) | 1 da @ 25°C; 32
da @ 5°C (MRID
45592104**) | | | Hydrolysis in published
literature: Lemley &
Zhong, 1983
(45602901**); Hansen &
Spiegel, 1983
(45602902**); Lemley &
Zhong, 1984
(45602903**) | Hydrolysis is sensitive to hydroxide concentration (base-catalyzed), with sulfone most sensitive and aldicarb least (Lemley & Zhong, 1983). Aldicarb hydrolysis rates increase at pH levels >7.5; sulfoxide and sulfone hydrolyze more readily and are affected by pH and temperature (results for 5, 15 °C) (Hansen & Spiegel, 1983). Both pH and temperature dependence seen in hydrolysis of al 3 chemicals. Rates for sulfone at 25 °C 60 da @ pH7, 6 da @ pH8 (Lemley & Zhong, 1984) | | | | | Aqueous photolysis
(MRID 45592105**) | 4 da | | 123 da (12 hr
lite/dark) | | | Aerobic soil metabolism (MRID 44005001) | 2.3 da in pH 6.1 sl
soil (unnamed from
NJ) | Concentrations
fluctuated
between 9-86% of
applied from 7-60
da post treatment | Concentrations
fluctuated
between 3-80% of
applied from 7-60
da post treatment | NOTE: 2000 DER indicates that sulfoxide, sulfone data were too variable to calculate formation, decline rates | |--|--|--|--|---| | Aerobic soil metabolism
range (MRID
00101934) | 7 – 26 da in 2 soils x
3 pH x 2 moisture
contents; avg 13.5
da; 90%upper conf
bound 16 da | Total carbamate residues (parent, sulfoxide, sulfone) | 11 – 110 da in 2
soils x 3 pH x 2
moisture contents;
avg 34 da;
90%upper conf
bound 48 da | See
Ald_ASM_sum,
mrid00101934
Worksheets | | Aerobic sol metabolism,
sulfone (MRID
00053370) | | | 3.33 da half-life
(pH 6.7 soil) | See
Ald_ASM_sum,
00053370
Worksheets | | Aerobic soil metabolism
(MRIDs
00093642,00080820,
00093640, 00053366) | 11, 12, 17 days for 3 soils | Total carbamate residues (parent, sulfoxide, sulfone) | 28, 47, 136 for 3 soils | See
Ald_ASM_sum,
00093642
Worksheets | | Lab studies of all 3 forms (Lightfoot et al, 1987; Bank & Tyrrell, | Combined residues (a oximes, nitrilse with h hydrolysis, not aerobi | Qualitative value only | | | | 1984) | Lightfoot et al, 1987 (MRID 45602904**) has been submitted, reviewed by contractor. It looks at degradation of aldicarb and total carbamates (parent, sulfoxide & sulfone) in surface soil, soil water, distilled water, sat'd zone soil in sterilized/unsterilized conditions (see below) | | | | | Lightfoot et al, 1987
(MRID 45602904**) | 1 (unsterilized) – 2.5
(sterilized) da
surface
37 (unsterilized) –
15 (sterilized) da
subsurf | Combined (parent+degr): 44
(unsterilized) – 10 (sterilized) da
surface soil
123 (unsterilized) – 16 (sterilized) da
subsurface soil | | See 45602904
Worksheet | |---|---|---|--|--| | Aerobic soil metabolism, sulfoxide | | 5 da (MRID
45592108) | | | | Aerobic soil metabolism,
2002 registrant
submissions; DERs
completed | 5.8 da in IL sil soil
(pH 5.7); 9.6 da in
NC Is (pH 6.4).
Recalc t1/2 using all
data (MRID
45739801) | | 15.2 da in IL sil
(pH 7.9); 91.2 da
in NC Is (pH 6.2).
Recalc t1/2 using
all data (MRID
45739802) | See 45739801,
45739802
worksheets | | Aerobic soil metabolism literature | | sulfone & sulfoxide half-lives in Dutch
subsoils from 2-131 da under
anaerobic cond., 84-1100 da under
aerobic cond. (Smelt et al, 1983) | | Subsoil rates;
qualitative value
only. | | Aerobic aquatic metabolism (literature) | 70-173 da in aerobic
Dutch surface
waters (Vink et al,
1997) | | | Qualitative value only | | Aerobic aquatic
metabolism, 2002-3
registrant submissions
** | 3.8 da (ttl system) in
pH 7.2 water / pH
6.3 sediment (MRID
45592107**) | 5 da (ttl system) in
pH 7.0 water / pH
6.3 sediment
(MRID
45592108**) | 3.5 da (ttl system)
in pH 7.0 water /
pH 6.3 sediment
(MRID
45592109**) | See
aqmet44592107
(aldicarb),
aqmet44592108
(sulfone),
aqmet44592109
(sulfoxide) | | Anaerobic aquatic metabolism | 3 hr with no
discernable pattern
of formation/decline
of sulfone, sulfoxide
(MRID 43805701) | 3.4 da (MRID
45592110) | 3.5 da (MRID
45592111) | | |--|---|---------------------------|---------------------------|--| | Published field studies
(Jones & Estes, 1995) | Summarized results of 32 field studies for aldicarb in 24 locations. Half life of total carbamate residues (aldicarb, sulfoxide, sulfone) in surface soil ranged from 0.3 to 3.5 months; mean 1.3 mo (40 da) & 90% upper confidence bound on mean 1.5 mo (45 da). In 2 studies, estimated subsurface half life of 5 mo. | | | | | Aerobic Soil Metabolism Rates, Mineral soils | | | | | | |--|---|------------------|-------------------|-----------------|----------------------------| | Study | Soil/ conditions | Aldicarb
t1/2 | Sulfoxide
t1/2 | Sulfone
t1/2 | Ttl carbamate residue t1/2 | | 0010193
4 | Lufkin fsl, pH6, 50% of field capacity | 26 | | | 110 | | | Lufkin fsl, pH7, 50% of field capacity | 22 | | | 75 | | | Lufkin fsl, pH8, 50% of field capacity | 24 | | | 83 | | | Lufkin fsl, pH6, 100% of field capacity | 9 | | | 12 | | Lufkin fsl, pH7, 100%
of field capacity | 12 | 14 | |--|----|----| | Lufkin fsl, pH8, 100% of field capacity | 10 | 15 | | Houston clay, pH6, 50% of field capacity | 11 | 13 | | Houston clay, pH7, 50% of field capacity | 7 | 12 | | Houston clay, pH8, 50% of field capacity | 8 | 11 | | Houston clay, pH6, 100% of field capacity | 9 | 18 | | Houston clay, pH7,
100% of field capacity | 12 | 16 | | | Houston clay, pH8,
100% of field capacity | 12 | | | 31 | |------------------------|--|----|---|---|------------------------| | 00053370 | Lakeland fsl, pH6.7 | | | 3 | | | 00093642
and others | Houston clay | 11 | | | 28 | | | Norwood sicl | 12 | | | 47 | | | Lakeland fsl | 17 | | | 136 | | 45602904 | "Plow layer",
unsterilized | 1 | | | 44 | | 44005001 | NJ soil, sl, pH6.1 | 2 | | | could not
determine | | 45592108 | | | 5 | | | | 45739801 | IL sil, pH 7.9 | 6 | 15 | | |----------|----------------|----|----|--| NC ls, pH 6.4 | 10 | 91 | | | | · | Average / 90% upper bound on mean aer soil metabolism t1/2 | | | | | | |--|-------------|-------------------|--------------------------|--------------------------------|----------------------------| | | No
soils | Aldicar
b t1/2 | Sulfoxide
t1/2 | Sulfone
t1/2 | Ttl carbamate residue t1/2 | | 0010193
4 | 12 | 13.5 / 16 | | | 34 / 48 | | 00093642
and others | 3 | 13 / 17 | | | 70/133 | | All studies
available
for 2001
RED | 17 | 12 / 14 | 5 (x 3 for single study) | 3 (x 3 for
single
study) | 42 / 55 | | Including
post-2001
RED | 19 | 12 / 14 | 5 (x 3 for single study) | 36 / 88
(3
studies) | 42 / 55 |